Scenario-Tree Decomposition: Bounds for Multistage Stochastic Mixed-Integer Programs
نویسندگان
چکیده
Multistage stochastic mixed-integer programming is a powerful modeling paradigm appropriate for many problems involving a sequence of discrete decisions under uncertainty; however, they are difficult to solve without exploiting special structures. We present scenario-tree decomposition to establish bounds for unstructured multistage stochastic mixed-integer programs. Our method decomposes the scenario tree into a number of smaller trees using vertex cuts, and combines the solutions of the resulting subproblems to generate the bounds. Lower bounds are calculated as the weighted sum of the solutions to the subproblems, and upper bounds are calculated using best root-to-cut decisions among all subproblems. We developed a multithreaded implementation of our method to solve the “embarrassingly parallel” subproblems. We evaluate our method on a number of test instances from the existing literature, and we found that our bounds are competitive with those of a state-of-the art commercial solver.
منابع مشابه
Column-Generation for Capacity-Expansion Planning of Electricity Distribution Networks
We present a stochastic model for capacity-expansion planning of electricity distribution networks subject to uncertain demand (CEP). We formulate CEP as a multistage stochastic mixed-integer program with a scenario-tree representation of uncertainty. At each node of the scenario-tree, the model determines capacity-expansions, operating con guration, and power ows. A super-arc representation ...
متن کاملScenario tree modelling for multistage stochastic programs
An important issue for solving multistage stochastic programs consists in the approximate representation of the (multivariate) stochastic input process in the form of a scenario tree. In this paper, forward and backward approaches are developed for generating scenario trees out of an initial fan of individual scenarios. Both approaches are motivated by the recent stability result in [15] for op...
متن کاملDantzig-Wolfe Decomposition for Solving Multistage Stochastic Capacity-Planning Problems
We describe a multistage, stochastic, mixed-integer programming model for planning capacity expansion of production facilities. A scenario tree represents uncertainty in the model; a general mixed-integer program defines the operational submodel at each scenario-tree node, and capacity-expansion decisions link the stages. We apply “variable splitting” to two model variants, and solve those vari...
متن کاملScenario grouping and decomposition algorithms for chance-constrained programs
A lower bound for a finite-scenario chance-constrained problem is given by the quantile value corresponding to the sorted optimal objective values of scenario subproblems. This quantile bound can be improved by grouping subsets of scenarios at the expense of larger subproblems. The quality of the bound depends on how the scenarios are grouped. We formulate a mixed-integer bilevel program that o...
متن کاملUser’s guide to ddsip.vSD – A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse
ddsip.vSD is a C-implementation of a number of scenario decomposition algorithms for stochastic linear programs with firstor second-order stochastic dominance constraints induced by mixed-integer linear recourse. The program is based on a previous implementation of scenario decomposition algorithms for mean-risk models of A. Märkert [20]. Main idea of the decomposition algorithms is the Lagrang...
متن کامل